
Introduction 

         In the wake of recent high profile airline incidents involving equipment failures, there has 

been renewed discussion involving airline safety. The airline industry is amongst the most highly 

regulated, with many rules being written after catastrophic events leading to loss of life or 

significant airliner damage. Although many of these recent incidents have involved human 

negligence, there is another source of plane failure, caused by animals. Bird strikes involving 

aircraft are an important topic for study due to their potential for substantial economic impact as 

well as their high safety risk in the event of a serious strike (Sodhi 2002)[1]. Although called bird 

strikes, these events encompass any animal collision of an aircraft, which does occasionally 

include land mammals on runways. 

Hypothesis 

         We suspect that factors including time of day, mass of the animal species, number of 

engines, and phase of the flightpath are significant predictors of whether an aircraft will sustain 

damage. Manipulating these variables could help to reduce the amount and severity of impacts, 

with the potential to save money and improve passenger safety. Furthermore, we postulate flights 

at night may have reduced potential for strikes, owing to reduced animal nighttime activity. 

Finally, in the event of a strike reported as damaging, we expect the typical weight of the species 

to be highly correlated with repair costs. 

Method 

         Data obtained from the FAA (Federal Aviation Administration), a subset of 28,300 

reports of bird strikes, was used for analysis (FAA Wildlife Strike Database)[2]. The subset 

includes only data where a bird strike was reported, regardless of severity. Incidents included in 

our dataset range from January 2000 to May 2015.  A table of the top fifty species responsible 

for collisions was also drawn from our main FAA data. We manually matched typical adult 

weights for each species to the table from available online data (University of Michigan Animal 

Diversity Web Database) [3]. 

 

 

 

 

 

 

Figure 1. Breakdown of repair cost 
classifications when there has been a 
damaging strike. 

Figure 2. Breakdown of strikes by region, 
indicating some bias but a generally 
balanced distribution. 



Exploratory analysis indicated that our class breakdown consists of 3111 damaging 

events and 25187 non-damaging strikes. The majority of damaging events fall into the minor 

category, with the remainder split between medium and substantial [Fig. 1]. Of particular interest 

are the 33 reports of ‘Destroyed’, where costs can climb into the multi-millions. We can also see 

that the data is relatively normally distributed in terms of regional incidents [Fig. 2]. We assume 

the relative variance in regional events is caused by a combination of higher aircraft volume and 

migratory bird flight patterns. 

Our initial model was a multiple logistic regression to predict the probability of a 

damaging strike. Random forest is well known to be particularly sensitive to class imbalance, 

which was a substantial factor in this dataset. Rather than apply complex transformations, we 

opted for a simpler model. Based on available literature, EPV (Events per Variable) is a 

workable metric to determine how small a category of data can be while still allowing for robust 

regression (Austin & Steyerberg 2017) [4]. In our case, the smallest category is n = 33, which 

exceeds the researcher’s n = 20 guideline for all variables. An assumption in this model is that 

there is little error in the FAA records of each event, and that the fifteen year sample is 

generalizable to the population of flights throughout the United States.  

Originally, our secondary model was intended to be a multiple linear regression to 

investigate the samples where damage occurred, using damage cost as the dependent variable. 

With this approach, we could estimate both the probability of damage occurring and an estimated 

cost if it does, given specific event parameters. Unfortunately, the cost total column indicating 

repair costs is very skewed. So skewed, that even with logarithmic transformation the data does 

not follow a normal distribution. Since the cost data violates assumptions of linear regression, we 

instead opted for a second logarithmic model, to classify damaging events between minor and 

substantial. 

Results

 

Figure 3. Initial regression model, incorporating key explanatory variables. Note timeofday is 

significant here but will not be in the subsequent model. 



Figure 5. Our confusion matrix shows 
moderate accuracy, with some issues in 
specificity. The model struggles with the 
class imbalance to some degree. 

 

Figure. 4 A refined model with additional significant parameters, here we can see timeofday is 

no longer significant, which is probably a result of collinearity between seasons and timeofday. 

The length of day or night corresponds with the season, as well as migratory patterns. Overall 

seasons are a better predictor than timeofday, which becomes clear when they are added to a 

model together. 

 

 
 



Figure 6. Shows how the severely damaging strikes tend to be concentrated into 

just a few species, which tend to be larger. The northern pintail is the exception 

and tends to fly in large flocks which may help to explain this result. 

 

Discussion 

The limitations of our dataset became more apparent as the model was constructed and 

refined. Our initial model, figure 3, shows that we correctly hypothesized the species’ average 

weight, and the engine count of an aircraft are statistically significant variables in predicting 

whether an animal collision will cause damage. Naturally, an aircraft with more engines has 

more points of failure, furthermore animal mass can increase the severity of an impact. This is 

well illustrated in figures 6 & 7 below, where we can see despite accounting for fewer strikes, 

the typical repair cost sustained is much higher for species such as geese and deer.  

 Feetaboveground was a proxy variable for the phase of flight, where a value of zero 

would indicate ‘at the airport’. We see an inverse relationship, which indicates damage is most 

likely to occur near the airport, such as during landing or takeoff. This is corroborated by 

industry statistics about the most dangerous phase of flight (Armstrong 2024) [5]. 

The hypothesis that a nighttime flight would have less chance of a damaging strike was 

proven incorrect, as the timeofday explanatory variable was not very significant. We decided to 

refine the model by adding other significant variables like seasons as shown in figure 4 above. 

Once seasonality was added as an explanatory variable, we could see a reduction in the 

importance of timeofday. There is likely some degree of collinearity, but we believe seasons are 

more useful data points for explaining probability of a damaging animal strike. 

 

 

 

 

 

 

 

 

 

 

 

 

 



We adjusted the base threshold of .5 to .89 to improve the specificity, seen in figure X. 

We found this breakpoint based on an AUC curve. The model’s predictive accuracy of 74.9% 

isn’t ideal, but we attribute this to systemic issues in the dataset. For instance, our attempt to 

make a second model classifying damage between minor and substantial was fruitless due to key 

issues in the data. The Effect..Amount.of.damage column which was taken directly from the 

FAA and should classify repair costs into minor/medium/substantial/destroyed was relatively 

arbitrary. There was a large degree of overlap between these categories, which made using it as 

the dependent variable unviable since the model would be unable to accurately categorize data 

with such indistinguishable classifications.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. This plot shows the species that most commonly strikes aircraft, regardless of whether 

it was a damaging event. Unsurprisingly, small domestic birds are the most common offenders.  

 

 

 

 

 



Conclusion 

  Ultimately, although our logistic model had somewhat limited predictive validity, in the 

process we discovered key gaps in data collection methodology, as well as potential avenues for 

collision reduction. Additional data such as aircraft heading and number of strikes, in the case of 

a flock, could potentially improve the model accuracy. Randomness is certainly a factor in 

animal collisions, nevertheless there are likely more predictive variables that could be 

incorporated, given additional data collection. 

Figure 6 illustrates the disproportionately high impact mammal strikes have on damage 

costs, despite their low incidence compared with bird strikes. There may be a misalignment of 

incentive between airline companies which wish to avoid damage to their aircraft, and the 

airports which must spend their budget on runway perimeter security. Some spending on fence 

reinforcement or inspection during the fall months when white-tailed deer are most active could 

reduce the likelihood of finding them in the path of a landing aircraft.  

Class imbalance and skewness of key metrics such as repair costs are significant hurdles 

that were partially mitigated but, consequently, limited our ability to effectively model the data. 

Perhaps drawing data from a larger timespan could reduce these limitations. The nature of 

investigating a rare event like bird strikes means outliers are not data noise to be removed, but 

the very object of study, difficult though it may be.  

Further Research 

Due to the infrequent occurrence of animal strikes we would like to see a larger data set. 

This could potentially allow for a better understanding of the likelihood of an animal strike and 

could potentially also lead to tracking trends over time, i.e. are animal strikes increasing or 

decreasing, is there a change in the frequency of strike for each animal species, are some 

locations improving their strike rate or cost over time. 

In addition to expanding the period of data collection, we would also like to see a wider 

range of geographic data collected. It could be interesting to compare animal strike data collected 

globally, with analysis focused on variations between geographic regions. This would be a large 

undertaking, but it could identify which regions have the lowest strike numbers and potentially a 

better understanding of why those regions tend to have fewer strikes. In the end, other airports 

could adopt these mitigation strategies to reduce their own strike numbers, making flights safer 

and with less disruption to travelers. 
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R Code 

library(DAAG) 

library(party) 

library(rpart) 

library(rpart.plot) 

library(mlbench) 

library(pROC) 

library(tree) 

library(caret) 

library(e1071) 

library(lime) 

library(ggplot2) 

library(dplyr) 

library(tidyr) 

library(forcats) 

 

setwd("D:/STAT E109/Week 13/") 

 

birds <- read.csv("faa_data_subset.csv") 

 

 

top50 <- birds %>%  

  group_by(Species=Wildlife..Species) %>% 

  summarize(Count=n()) %>% 

  arrange(desc(Count)) %>% 

  head(50) 

top50 

 

damagedflights <- birds %>%  

  group_by(birds$Effect..Indicated.Damage) %>% 

  summarize(Count=n()) %>% 

  arrange(desc(Count)) 

damagedflights 



 

# Cleaning 

birds$When..Time.of.day <- ifelse(nchar(birds$When..Time.of.day)==0, "Night", birds$When..Time.of.day) 

birds$When..Time.of.day[birds$When..Time.of.day == "Dawn"] <- "Day" 

birds$When..Time.of.day[birds$When..Time.of.day == "Dusk"] <- "Night" 

 

birds$Feet.above.ground[birds$Feet.above.ground == ""] <- 0 

 

birds$Collision.Date.and.Time <- as.Date(birds$Collision.Date.and.Time, format="%m/%d/%Y") 

birds$season[format(birds$Collision.Date.and.Time, '%m') %in% c('03','04','05')] <- 1 

birds$season[format(birds$Collision.Date.and.Time, '%m') %in% c('06','07','08')] <- 2 

birds$season[format(birds$Collision.Date.and.Time, '%m') %in% c('09','10','11')] <- 3 

birds$season[format(birds$Collision.Date.and.Time, '%m') %in% c('12','01','02')] <- 4 

birds$season <- factor(birds$season) 

 

birds$degreeofdamage[birds$Effect..Amount.of.damage..detailed. %in% c('Minor','Medium')] <- 0 

birds$degreeofdamage[birds$Effect..Amount.of.damage..detailed. %in% c('Substantial','Destroyed')] <- 1 

birds$degreeofdamage <- factor(birds$degreeofdamage) 

 

# factor time of day 

birds$timeofday[birds$When..Time.of.day == "Day"] <- 1 

birds$timeofday[birds$When..Time.of.day == "Night"] <- 2 

 

 

# Remove NAs 

birds[!(is.na(birds$Typical.Weight) | birds$Typical.Weight==""), ] 

birds.truncated <- birds[!(is.na(birds$Typical.Weight) | birds$Typical.Weight==""), ] 

 

 

# Split data 

set.seed(4321) 

ind <- sample(2, nrow(birds.truncated), replace = T, prob = c(0.7, 0.3)) 

train <- birds.truncated[ind == 1,] 



test <- birds.truncated[ind == 2,] 

 

 

# One-Hot encoding for categorical data ? may not need 

 

# initial logistic model, improved later 

logisticm <- glm(as.factor(Effect..Indicated.Damage)~Aircraft..Number.of.engines + timeofday + Typical.Weight + 

Feet.above.ground, data = train, family = 'binomial') 

summary(logisticm) 

 

linearm <- lm(Cost..Total ~ Aircraft..Number.of.engines + timeofday + Typical.Weight + Feet.above.ground - 1, data 

= train) 

summary(linearm) 

 

###DY 05-01-24 

 

#Logistic Regression model with all significant predictors by replacing timeofday with season 

logisticm2 <- glm(factor(Effect..Indicated.Damage) ~ Aircraft..Number.of.engines + timeofday+Typical.Weight + 

Feet.above.ground + season, data=train, family='binomial') 

summary(logisticm2) 

 

cat('Baseline Rate : ', sum(train$Effect..Indicated.Damage=='No damage') / nrow(train), '\n') 

p1 = predict(logisticm2, train, type='response') 

pred1 = ifelse(p1>0.5, 'No damage', 'Caused damage') 

confusionMatrix(factor(pred1), factor(train$Effect..Indicated.Damage), positive='No damage') 

 

 

#rerun model with .89 threshold  

pred2 = ifelse(p1>0.89, 'No damage', 'Caused damage') 

confusionMatrix(factor(pred2), factor(train$Effect..Indicated.Damage), positive='No damage') 

 

#r = multiclass.roc(factor(train$Effect..Indicated.Damage), p1, percent=T) 

#roc = r[['rocs']] 

#r1 = roc[[1]] 



#plot.roc(r1, print.auc=T, print.thres=T, col='blue') 

#auc(r1) 

#coords(r1, 'best', ret=c('threshold', 'accuracy', 'sensitivity', 'specificity')) 

 

par(mfrow=c(1,1)) 

ggplot(birds_vs_mammals, aes(x=Typical.Weight, y=log(Cost..Total), col=Wildlife..Animal.Category)) + 

  geom_point() + 

  geom_smooth(method='lm', se=0) + 

  labs(title='Total Cost of Damage vs. Typical Weight, per Animal Category', 

       y='Total Cost (Log)', x='Animal Weight (oz)') 

 

###DY 05-02-24 

 

#Re-classify amount of damage into two categories: 0=Minor, 1=Major (append chunk to Cleaning) 

birds$degreeofdamage[birds$Effect..Amount.of.damage..detailed. %in% c('Minor','Medium')] <- 0 

birds$degreeofdamage[birds$Effect..Amount.of.damage..detailed. %in% c('Substantial','Destroyed')] <- 1 

birds$degreeofdamage <- factor(birds$degreeofdamage) 

 

#Logistic Regression model to predict degree of damage 

train2 <- train %>% filter(!is.na(degreeofdamage)) 

test2 <- test %>% filter(!is.na(degreeofdamage)) 

 

logisticm3 <- glm(degreeofdamage ~ Aircraft..Number.of.engines + Typical.Weight, data=train2, family='binomial') 

summary(logisticm3) 

 

cat('Baseline Rate : ', sum(train2$degreeofdamage==0) / nrow(train2), '\n') 

p2 = predict(logisticm3, train2, type='response') 

pred2 = ifelse(p2>0.5, 1, 0) 

confusionMatrix(factor(pred2), train2$degreeofdamage, positive='1') 

 

 

###DY 05-03-24 

 



top50B <- birds.truncated %>%  

  group_by(Species=Wildlife..Species) %>% 

  summarise(Count=n(), Mean=mean(Cost..Total)) %>% 

  arrange(desc(Count)) 

 

#Get top 20 total number of strikes by species 

ggplot(top50B[1:20, ], aes(x=reorder(Species, Count), y=Count)) + 

  geom_bar(stat='identity', fill='blue', alpha=.6, width=.5) + 

  coord_flip() + 

  labs(title='Top 20 Number of Strikes by Species', x='Species', y='Number of Strikes') + 

  scale_y_continuous(limits=c(0,2100), n.breaks=10) + 

  theme_bw() + 

  theme(panel.grid.major.y=element_blank()) 

 

#Get top 10 average total cost of damage by species 

top50C <- top50B %>% arrange(desc(Mean)) 

ggplot(top50C[1:10, ], aes(x=reorder(Species, Mean), y=Mean)) + 

  geom_bar(stat='identity', fill='red', alpha=.6, width=.6) + 

  coord_flip() + 

  labs(title='Top 10 Average Cost of Damage by Species', x='Species', y='Cost of Damage ($)') + 

  scale_y_continuous(limits=c(0,145000), n.breaks=10) + 

  theme_bw() + 

  theme(panel.grid.major.y=element_blank()) 


